109 research outputs found

    Application of Probabilistic Ranking Systems on Womenā€™s Junior Division Beach Volleyball

    Get PDF
    Womenā€™s beach volleyball is one of the fastest growing collegiate sports today. The increase in popularity has come with an increase in valuable scholarship opportunities across the country. With thousands of athletes to sort through, college scouts depend on websites that aggregate tournament results and rank players nationally. This project partnered with the company Volleyball Life, who is the current market leader in the ranking space of junior beach volleyball players. Utilizing the tournament information provided by Volleyball Life, this study explored replacements to the current ranking systems, which are designed to aggregate player points from recent tournament placements. Three probabilistic/modern ranking techniques were tested, specifically an Elo variant, TrueSkill, and a random walker graph network. This study found that Elo could predict match outcomes with a 13% higher accuracy than the preexisting systems and TrueSkill with an 11% higher accuracy

    Hierarchical phylogenetic community assembly of soil protists in a temperate agricultural field

    Get PDF
    Protists are abundant, diverse and perform essential functions in soils. Protistan community structure and its change across time or space are traditionally studied at the species level but the relative importance of the processes shaping these patterns depends on the taxon phylogenetic resolution. Using 18S rDNA amplicon data of the Cercozoa, a group of dominant soil protists, from an agricultural field in western Germany, we observed a turnover of relatively closely related taxa (from sequence variants to genusā€level clades) across soil depth; while across soil habitats (rhizosphere, bulk soil, drilosphere), we observed turnover of relatively distantly related taxa, confirming Paracercomonadidae as a rhizosphereā€associated clade. We extended our approach to show that closely related Cercozoa encounter divergent arbuscular mycorrhizal (AM) fungi across soil depth and that distantly related Cercozoa encounter closely related AM fungi across soil compartments. This study suggests that soil Cercozoa community assembly at the field scale is driven by nicheā€based processes shaped by evolutionary legacy of adaptation to conditions primarily related to the soil compartment, followed by the soil layer, giving a deeper understanding on the selection pressures that shaped their evolution

    A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae

    Get PDF
    International audienceBacteria with multiple chromosomes represent up to 10% of all bacterial species. Unlike eukaryotes, these bacteria use chromosome-specific initiators for their replication. In all cases investigated, the machineries for secondary chromosome replication initiation are of plasmid origin. One of the important differences between plasmids and chromosomes is that the latter replicate during a defined period of the cell cycle, ensuring a single round of replication per cell. Vibrio cholerae carries two circular chromosomes, Chr1 and Chr2, which are replicated in a well-orchestrated manner with the cell cycle and coordinated in such a way that replication termination occurs at the same time. However, the mechanism coordinating this synchrony remains speculative. We investigated this mechanism and revealed that initiation of Chr2 replication is triggered by the replication of a 150-bp locus positioned on Chr1, called crtS. This crtS replication-mediated Chr2 replication initiation mechanism explains how the two chromosomes communicate to coordinate their replication. Our study reveals a new checkpoint control mechanism in bacteria, and highlights possible functional interactions mediated by contacts between two chromosomes, an unprecedented observation in bacteria

    Gene cassette transcription in a large integron-associated array

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The integron/gene cassette system is a diverse and effective adaptive resource for prokaryotes. Short cassette arrays, with less than 10 cassettes adjacent to an integron, provide this resource through the expression of cassette-associated genes by an integron-borne promoter. However, the advantage provided by large arrays containing hundreds of cassettes is less obvious. In this work, using the 116-cassette array of <it>Vibrio </it>sp. DAT722 as a model, we investigated the theory that the majority of genes contained within large cassette arrays are widely expressed by intra-array promoters in addition to the integron-borne promoter.</p> <p>Results</p> <p>We demonstrated that the majority of the cassette-associated genes in the subject array were expressed. We further showed that cassette expression was conditional and that the conditionality varied across the array. We finally showed that this expression was mediated by a diversity of cassette-borne promoters within the array capable of responding to environmental stressors.</p> <p>Conclusions</p> <p>Widespread expression within large gene cassette arrays could provide an adaptive advantage to the host in proportion to the size of the array. Our findings explained the existence and maintenance of large cassette arrays within many prokaryotes. Further, we suggested that repeated rearrangement of cassettes containing genes and/or promoters within large arrays could result in the assembly of operon-like groups of co-expressed cassettes within an array. These findings add to our understanding of the adaptive repertoire of the integron/gene cassette system in prokaryotes and consequently, the evolutionary impact of this system.</p

    Integrase-directed recovery of functional genes from genomic libraries

    Get PDF
    Large population sizes, rapid growth and 3.8 billion years of evolution firmly establish microorganisms as a major source of the planet's biological and genetic diversity. However, up to 99% of the microorganisms in a given environment cannot be cultured. Culture-independent methods that directly access the genetic potential of an environmental sample can unveil new proteins with diverse functions, but the sequencing of random DNA can generate enormous amounts of extraneous data. Integrons are recombination systems that accumulate open reading frames (gene cassettes), many of which code for functional proteins with enormous adaptive potential. Some integrons harbor hundreds of gene cassettes and evidence suggests that the gene cassette pool may be limitless in size. Accessing this genetic pool has been hampered since sequence-based techniques, such as hybridization or PCR, often recover only partial genes or a small subset of those present in the sample. Here, a three-plasmid genetic strategy for the sequence-independent recovery of gene cassettes from genomic libraries is described and its use by retrieving functional gene cassettes from the chromosomal integron of Vibrio vulnificus ATCC 27562 is demonstrated. By manipulating the natural activity of integrons, we can gain access to the caches of functional genes amassed by these structures

    The influence of the accessory genome on bacterial pathogen evolution

    Get PDF
    Bacterial pathogens exhibit significant variation in their genomic content of virulence factors. This reflects the abundance of strategies pathogens evolved to infect host organisms by suppressing host immunity. Molecular arms-races have been a strong driving force for the evolution of pathogenicity, with pathogens often encoding overlapping or redundant functions, such as type III protein secretion effectors and hosts encoding ever more sophisticated immune systems. The pathogensā€™ frequent exposure to other microbes, either in their host or in the environment, provides opportunities for the acquisition or interchange of mobile genetic elements. These DNA elements accessorise the core genome and can play major roles in shaping genome structure and altering the complement of virulence factors. Here, we review the different mobile genetic elements focusing on the more recent discoveries and highlighting their role in shaping bacterial pathogen evolution

    Antimicrobial usage and resistance in beef production

    Full text link

    Application of Probabilistic Ranking Systems on Womenā€™s Junior Division Beach Volleyball

    Get PDF
    Womenā€™s beach volleyball is one of the fastest growing collegiate sports today. The increase in popularity has come with an increase in valuable scholarship opportunities across the country. With thousands of athletes to sort through, college scouts depend on websites that aggregate tournament results and rank players nationally. This project partnered with the company Volleyball Life, who is the current market leader in the ranking space of junior beach volleyball players. Utilizing the tournament information provided by Volleyball Life, this study explored replacements to the current ranking systems, which are designed to aggregate player points from recent tournament placements. Three probabilistic/modern ranking techniques were tested, specifically an Elo variant, TrueSkill, and a random walker graph network. This study found that Elo could predict match outcomes with a 13% higher accuracy than the preexisting systems and TrueSkill with an 11% higher accuracy
    • ā€¦
    corecore